
Received April 15, 2019, accepted May 8, 2019, date of publication May 15, 2019, date of current version May 28, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2916615

Using Tri-Relation Networks for Effective
Software Fault-Proneness Prediction
YIHAO LI 1, W. ERIC WONG 2,3, SHOU-YU LEE3, AND FRANZ WOTAWA 1
1Institute of Software Technology, Graz University of Technology, 8010 Graz, Austria
2Shanghai Business School, Shanghai 201400, China
3Department of Computer Science, The University of Texas at Dallas, Richardson, TX 75080, USA

Corresponding author: W. Eric Wong (ewong@utdallas.edu)

ABSTRACT Software modules and developers are two core elements during the process of software
development. Previous studies have shown that analyzing relations between 1) software modules; (2)
developers; and (3) modules and developers, is critical to understand how they interact with each other, which
ultimately affects software quality. Specifically, relations such as developer contribution relation, module
dependency relation, and developer collaboration relation have been used independently or in pairs to build
networks for software fault-proneness prediction. However, none of them investigate the joint effort of these
three relations. Bearing this in mind, in this paper, we propose a tri-relation network, a weighted network
that integrates developer contribution, module dependency, and developer collaboration relations to study
their combined impact on software quality. Four network node centrality metrics are further derived from
the proposed network to predict the fault-proneness of a given software module at the file level. Moreover,
we have explored a mechanism to refine current networks in order to further improve the effectiveness of
software fault-proneness prediction.

INDEX TERMS Tri-relation network, developer contribution relation, module dependency relation, devel-
oper collaboration relation, network node centrality metrics, software fault-proneness prediction.

I. INTRODUCTION
Software failures are becoming increasingly costly: a study
by the National Institute of Standards and Technology reports
that the annual cost of software bugs in the U.S. is about
$59.5 billion [66]. Although software fault localization tech-
niques [74]–[77], [80] are becoming more comprehensive,
it is still expensive to precisely locate, let alone fix, bugs1

in a program. Moreover, software bugs may cause severe
impacts on system failure [82]. As a result, we may apply
fault-proneness prediction beforehand to alleviate the cost of
program debugging [8], [12], [19], [32]–[35], [41], [53]–[58],
[64], [73], [78], [79], [81]–[84].

Meanwhile, social network analysis has been frequently
applied in software engineering. Ghosh [24] reports that
many open source projects at SourceForge are organized as
social networks. Xu et al. [85] classify people working an
open source project at SourceForge into project leader, core
developer, co-developer, and active user. Ohira et al. [52]
apply social network analysis and collaborative filtering to

The associate editor coordinating the review of this manuscript and
approving it for publication was Hui Liu.

1In this paper, we use ‘‘bugs’’ and ‘‘faults’’ interchangeably. We also use
the terms ‘‘software’’ and ‘‘program’’ interchangeably.

identify experts across different projects. Howison et al. [30]
also use data collected from SourceForge to investigate how
the social structures in projects are changing.

With regard to software quality control, study conducted
by Cataldo et al. [16] indicates that logical dependency (i.e.,
two files are modified in the same commit) is a more accurate
representation of product dependency affecting the develop-
ment effort and it also explains most of the variance in fault-
proneness [17]. Bird et al. [12] and Meneely [46] point out
that ownership (e.g., a developer contributes a commit on a
software module) can have a strong relationship to software
defects. Ell [21] and Simpson [64] use the Failure Index (FI)
to determine the failure-inducing possibility of developer
pairs in developer social networks. In general, these studies
characterize software quality from a specific relation between
either developers, modules, or developers and modules.

In this paper, 2 three types of relations during the process
of software development are investigated: the developer con-
tribution relation (who works on which software modules),
the module dependency relation (which modules are depen-
dent on others), and the developer collaboration relation

2This paper is based on Chapters 3, 4, and 5 of Li’s dissertation [42].

63066 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-9874-0338
https://orcid.org/0000-0002-0462-2283
https://orcid.org/0000-0002-1021-4753

Y. Li et al.: Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction

(which developers work together on the same modules).
These relations have been used independently or in pairs
in social network analysis to construct different networks to
predict which modules are likely to contain faults at different
levels such as developer contribution network (DCN) [59],
module dependency network (MDN) [87], socio-technical
network (STN) [11], [62], and developer collaboration net-
work (DN) [46]. Encouraging results in prior research indi-
cate that software modules that play key roles and are central
in these networks tend to be more fault-prone than modules
in the surrounding areas of the network [11], [46], [50], [59],
[87]. Although these networks are useful for fault-proneness
prediction, they are built either by a single relation or by
a pair of relations mentioned above. We therefore propose
the Tri-Relation Network (TRN), a weighted social network
that integrates all three types of relations. Four network node
centrality metrics are correspondingly derived from TRN.
The design of TRN not only merges the features of DCN,
MDN, STN, andDN, but also includes additional relationship
(i.e., logical dependency). Moreover, a calibration mecha-
nism based on developer quality [40] for edge weights on
TRN and other four networks is explored for further enhance-
ment as well. After all, it is developers who make mistakes
and introduce faults into software. Case studies are con-
ducted on six software projects to evaluate the effectiveness
of TRN-based metrics in predicting software fault-proneness.
In our study, we answer the following three research ques-
tions, which are thoroughly discussed later in Section V.
R1 Are centrality metrics derived from TRN important

indicators for the number of post-released bugs in a
file?3

R2 Do centrality metrics derived from TRN effectively
improve software fault-proneness prediction models?

R3 Will the fault-proneness prediction effectiveness be
improved if applying the proposed edge calibration
mechanism on TRN and other four networks.

The remainder of the paper is structured as follows.
Section II presents related work whence the proposed TRN
arises. Section III explains the proposed TRN. Four network
node centrality metrics used in our study and ten soft-
ware metrics that are commonly used for predicting fault-
proneness are introduced in Section IV. Our case studies are
detailed in Section V. Section VI discusses some threats to
the validity of our study. Finally, our conclusions and plans
for future work appear in Section VII.

II. RELATED WORK
The TRN arises from four existing types of networks that
have been developed for predicting software fault-proneness:
the developer contribution network (DCN), the module

3Although we use the term ‘‘software module’’ in previous paragraphs,
we want to emphasize that a software module is a generic term to represent
a unit of a software system. It can have different representations depending
on how a software system is described on a particular architectural level. For
example, it can represent a single function, a single class, or a single file.
In our case studies, a software module refers to a file.

FIGURE 1. A DCN with 2 developers and 3 software modules.

dependency network (MDN), the socio-technical network
(STN), and the developer collaboration network (DN).

A. DEVELOPER CONTRIBUTION NETWORK (DCN)
In [59], Pinzger et al. represent developer contributions with
a developer-module network that is called a contribution
network. Case studies based on data collected fromWindows
Vista indicate that centrality metrics derived from the con-
tribution network are good indicators of the number of post-
release faults.

A contribution network is an undirected graph G that is
formally defined as G = (D, N , E). D and N are the two
sets of vertices, and E is a set of edges between vertices
E ⊆ {(d , n)| d ∈ D

∧
n ∈ N}. D represents the set of

developers and N the set of software modules. An edge e ∈ E
denotes a contribution of a developer d ∈ D to a module
n ∈ N . A contribution refers to a commit of a developer
to a module. Edges are always between a developer and a
module, and there are no self-loops (i.e., neither modules nor
developers can contribute to themselves). Edge weights are
used to denote the number of commits a developer has made
to a module. Figure 1 depicts a sample developer contribution
network. Circles represent developers, rectangles represent
software modules, and edges represent developer contribu-
tions to modules. For example, developer Bob has made 6
commits to module A. Developer Dan has made 3, 1, and 4
commits to Modules A, B, and C , respectively.

B. MODULE DEPENDENCY NETWORK (MDN)
Zimmermann and Nagappan [87] construct a network from
dependency information for software modules in Windows
Server 2003. They also find that social network analysis-
based metrics derived from the dependency network are good
indicators of the number of post-release faults and module
fault-proneness, which is consistent with the results presented
in [50] and [59]. Generally, a dependency network models the
dependency relationships (e.g., call graphs, class inheritance,
class coupling, etc.) between software modules within a soft-
ware system. It is a directed graph that is formally defined as
G = (N , E) where N is the set of software modules and E
is the set of directed edges such that (n1, n2) ∈ E if Module
n1 has a dependency on Module n2. Figure 2 shows a sim-
ple dependency network where rectangles represent software
modules and directed edges represent module dependency
relationships. For example, Module A has a dependency on

VOLUME 7, 2019 63067

Y. Li et al.: Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction

FIGURE 2. A MDN with 4 software modules.

FIGURE 3. A STN with 2 developers and 5 software modules.

Modules B and C respectively. Modules A and D are both
dependent on Module B.

C. SOCIO-TECHNICAL NEWORK (STN)
In [11], Bird et al. argue that the dependency relations
and contribution history should be used together for fault-
proneness prediction. They construct a socio-technical net-
work by combining the developer contribution network and
the module dependency network.

In the socio-technical network, there is a bidirectional
dashed edge (denoted as the contribution edge) between a
developer and a software module if the developer has made
a commit to the module. The weight on the contribution
edge is set as the number of commits from a developer
to a module, and the weight of module dependencies is
set to 1. Figure 3 shows a sample socio-technical network
with 2 developers and 5 modules. For example, developer
Bob has made 6, 2, and 3 commits to Modules A, E , and
B, respectively. Module E has dependencies on Modules B,
C , and D, respectively.

D. DEVELOPER COLLABORATION NETWORK (DN)
Meneeley et al. [46] construct a developer collaboration net-
work consisting solely of developers in which edges between
developers are based on collaboration on common modules.
The authors use social network analysis to assign values of
metrics to developers. The value of a metric for a module
is based on the values of the developers that contributed to
that module (e.g., the sum of a metric for developers for a
module).

Figure 4 depicts a sample developer network with 4 devel-
opers. Circles represent developers and edges represent com-
mon files that two developers have both worked on in a
particular release. For example, developers Bob and Pan have
both worked on Module A during Release R1.
As mentioned above, DCN, MDN, STN, and DN are built

either by a single relation or by a pair of relations. These
networks also seem to miss an important factor developer

FIGURE 4. A DN with 4 software developers.

quality as it is developers who make mistakes and create
bugs during software development. Therefore, we intend to
propose an enhanced social network which integrates the
features of these four networks with additional adjustments.

III. THE PROPOSED TRI-RELATION NETWORK (TRN)
The motivation behind TRN is that a network integrating
developer contribution, module dependency, and developer
collaboration can provide a more fully comprehensive insight
into the interactions between developers and modules than
the use of networks based on either a single or a paired
relation. This insight is expected to ultimately enhance the
effectiveness of software fault-proneness prediction.

In a TRN, there is a directed edge (denoted as the developer
contribution) between a developer and a software module if
the developer has made a commit to the module between two
consecutive releases (e.g., between Release R and Release
R + 1). The weight on the contribution edge is set as the
normalized4 number of commits made from a developer to
a module between Release R and Release R + 1. Dependen-
cies between modules are represented as directed dash-dot
edges with arrows pointing to the modules upon which other
modules depend. It is worth noting that we consider two
types of dependency: functional dependency (i.e., a function
in a file calls another function in a different file) and logical
dependency (i.e., two files are modified in the same commit).
We believe the use of both dependency types provides a
more accurate representation of module dependencies affect-
ing the development effort. The well-known commercialized
tool Understand from SciTools [69] is used to quantify the
normalized dependencies between two modules. The weights
for logical dependency between two modules are computed
as the normalized number of times that these two modules
are modified in the same commit. The resulting module
dependency is computed as the sum of normalized functional
dependency and normalized logical dependency. In addition,
there is a bidirectional dotted edge between one developer and
another if these two developers havemade at least one commit
on the samemodule between release R and Release R+1. The
weight on collaboration edge is computed as the normalized
number of modules two developers have worked on together
between Release R and Release R + 1. Figure 5 presents
a TRN with 3 developers and 4 modules. For example, the

4In this paper, we apply the Min-Max approach for data normalization.

63068 VOLUME 7, 2019

Y. Li et al.: Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction

FIGURE 5. A TRN with 3 developers and 4 software modules.

weight on the developer contribution edge Bob-to-Module A
is 0.3. The module dependency edge Module A-to-Module C
is 0.2 (normalized functional dependency)+ 0.4 (normalized
logical dependency)= 0.6. The developer collaboration edge
Bob-to-Dan is 0.1.

IV. METRICS
In this section, we first introduce four network node centrality
metrics that are used in our study. Then we present another
ten software metrics that are commonly used for predicting
software fault-proneness.

Network node centrality metrics stem from social network
theory and are used to quantify the location of a node to
the rest of the network. There are three types of network
node centrality5: (1) degree centrality, (2) closeness central-
ity, and (3) betweenness centrality. Degree centrality metrics
are computed based on the number of edges that a node has.
The more edges a node has, the more central is the node.
Two degree centrality metrics are used in our study: Freeman
degree centrality (denoted as MFDC) and Bonacich’s power
(denoted as MBP). MFDC here is calculated as the number
of direct edges a node has to its neighbors. MBP is based on
the adjacencies. It takes into account the connections of one’s
connections, in addition to one’s own connections. MFDC and
MBP focus on the number of developers and other modules
it directly connects to, the impact of direct interactions on
the module. The more people that are working on the mod-
ule, the higher the probability of introducing faults due to
inconsistent coding style, especially when these people have
never worked/communicated with each other before. Due to
the direct dependency relationship, the more changes that are
made on its neighbor modules, the higher the probability that
appropriate changes should be made on the module accord-
ingly, thus the more difficult to maintain the module. Close-
ness centrality emphasizes the distance of a node to other
nodes in the network. In this paper, we use one such node
distance measure: eigenvector of geodesic distances (denoted
as MEGD). MEGD finds the most central nodes (i.e. those with
the smallest farness from others) in terms of the ‘‘global’’ or
‘‘overall’’ structure of the network, and pays less attention to
patterns that are more ‘‘local’’. Specifically, MEGD applies

5For more details about the computation of the centrality metrics intro-
duced in this section, we refer the reader to textbooks and articles such
as [13], [14], [22], [29], and [71].

TABLE 1. Ten commonly used software metrics.

factor analysis to identify ‘‘dimensions’’ of the distances
among nodes. The location of each node with respect to each
dimension is called an ‘‘eigenvalue’’, and the collection of
such values is called the ‘‘eigenvector’’. Usually, the first
dimension captures the ‘‘global’’ aspects of distances among
nodes; second and further dimensions capture more specific
and local sub-structures. Betweenness centrality denotes the
extent to which information flows through a node to get from
one node to another. The more information flows through a
node, the higher its betweenness centrality. For betweenness
centrality, we use one such metric, Freeman node between-
ness (denoted as MFNB). It counts how frequently each node
falls in the geodesic paths between all pairs of nodes. MEGD
and MFNB focus on the connection strength of the module to
all modules and developers that it either directly or indirectly
connects to. The closer the module to other modules and
developers, the stronger the connection, the more likely the
module can be affected by other modules and developers in a
way. In total, these four centrality metrics (i.e., MFDC, MBP,
MEGD, and MFNB), which are also widely used in previous
studies [11], [46], [50], [59], [87], are used in our study.
We use a tool, Ucinet [8], to compute the values of these
four centrality metrics based on the instructions given by
Hanneman and Riddle [29].

Additionally, we introduce another ten software metrics,
as shown in TABLE 1, that are commonly used for predict-
ing software fault-proneness, including Lines of Code [51],
McCabe Complexity [45], all six CKmetrics [18], number of
commits [47], and number of developers [58], all of which
will be used later in our case studies. We use a tool, Under-
stand [69], to compute the values of these ten metrics.
For the sake of both simplicity and consistency, we use the

notations provided in TABLE 2. For example, X represents a
generic weighted network such as TRN, DCN, MDN, STN,
or DN. MCen represents a generic network code centrality
metric (e.g., MFDC, MBP, MEGD, or MFNB). MX−Cen repre-
sents a MCen derived from X. For example, MTRN−FDC rep-
resents the FDC network node centrality metric derived from
a TRN. Meanwhile, all four network node centrality metrics
derived from aTRN (i.e.,MTRN−FDC,MTRN−BP,MTRN−EGD,
and MTRN−FNB) can now be simplified to MTRN. We use
MCO to denote a metric set that contains the ten software
metrics described in TABLE 1. In addition, we use 8 (MX)

VOLUME 7, 2019 63069

Y. Li et al.: Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction

TABLE 2. Notations relevant to metrics, networks, and fault-proneness
prediction models.

TABLE 3. Network node centrality metrics derived from TRN, DCN, MDN,
STN, and DN.

and 8 (MCO) to denote a software fault-proneness prediction
model using all four network code centrality metrics derived
from X and a prediction model using the ten commonly used
metrics, respectively. Since for each network we have four
centrality metrics, a total of 20 metrics can be derived as
shown in TABLE 3.

V. CASE STUDIES
In this section, we examine the three research questions
related to our study, followed by a discussion of the software
programs and the data analysis techniques used in our case
studies. Results are presented at the end of this section.

A. THREE RESEARCH QUESTIONS
Here we simply revisit the three research questions from
Section I.
R1 Are centrality metrics derived from TRN important

indicators for the number of post-released bugs in a
file?

R2 Do centrality metrics derived from TRN effectively
improve software fault-proneness prediction models?

R3 Will the fault-proneness prediction effectiveness
improve if applying the proposed edge calibration
mechanism on TRN and other four networks?

Answers to these three questions can help determine
whether TRN-based centrality metrics are more powerful
in building fault-proneness prediction models than not only
DCN-, MDN-, STN-, or DN-based centrality metrics, but
also software metrics that are commonly used for fault-
proneness prediction. Moreover, valuable insights will be
gained regarding the contributing factors that can be used
to refine current networks in order to further enhance the
prediction effectiveness.

B. SIX SOFTWARE PROGRAMS STUDIED
Our experiments use six programs, Camel [1], Flume [2],
Tika [3], Gedit [23], Nginx [49], and Redis [61]. Camel is

TABLE 4. Program information.

TABLE 5. Correlation analysis using spearman rank correlation coefficient
for Camel 1.4.0 where correlation is significant at the 0.05 level.

an open-source integration framework to define routing and
mediation rules in a variety of domain-specific languages.
Flume is a distributed service for collecting, aggregating,
and moving log data from different sources to a centralized
data store. Tika detects and extracts metadata and text from
different file types such as PPT, XLS, and PDF. Gedit is the
GNOME text editor. Nginx is an HTTP and reverse proxy
server, a mail proxy server, and a generic TCP/UDP proxy
server. Redis is an open source, in-memory data structure
store, used as a database, cache andmessage broker. TABLE 4
summarizes the information for these six programs used in
our case studies. The columns, starting from the left, give
project name, release version, lines of code (including blanks
and comments), number of files, and number of faulty files.
Each program contains two consecutive releases. The values
of all metrics are collected at file level.

C. EXPERIMENTAL METHODOLOGY
In order to answer R1, we use Spearman rank correlation
coefficient [65] to measure the correlation between each met-
ric (described in TABLE 5 through TABLE 10) and the num-
ber of post-released bugs for Camel 1.4.0, Flume 1.5.0, Tika
1.6, Gedit 2.25.4, Nginx 1.3.0, and Redis 2.6.0.8 respectively.
The coefficient is between+1 and−1, inclusive, in which+1
is total positive correlation, 0 is no correlation, and−1 is total
negative correlation.

In order to answer R2, we use a data mining tool,
Weka [72], to construct different fault-proneness prediction
models. For each program, a total of six datasets are formed
based on TRN, DCN, MDN, STN, and DN, as well as a
dataset consisting of ten commonly used metrics (denoted
as CO-based dataset) from two consecutive software releases

63070 VOLUME 7, 2019

Y. Li et al.: Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction

TABLE 6. Correlation analysis using spearman rank correlation coefficient
for Flume 1.5.0 where correlation is significant at the 0.05 level.

TABLE 7. Correlation analysis using spearman rank correlation
coefficient for Tika 1.6 where correlation is significant at the 0.05 level.

TABLE 8. Correlation analysis using spearman rank correlation coefficient
for Gedit 2.25.4 where correlation is significant at the 0.05 level.

TABLE 9. Correlation analysis using spearman rank correlation coefficient
for Nginx 1.3.0 where correlation is significant at the 0.05 level.

TABLE 10. Correlation analysis using spearman rank correlation
coefficient for Redis 2.6.0.8 where correlation is significant at the
0.05 level.

(say Release 1 and Release 2).We use all data points collected
from Release 1 as the training set. Because of the class imbal-
ance issue in the training set we apply SMOTE [43], [70],
[86] to oversample the minority class (i.e., classified as fault-
prone) so that the size of fault-prone samples is equal to
the size of samples that are non-fault-prone. For the training
set, we randomly split all fault-prone classes in the training
set into 30 equal-sized groups. We do the same for all non-
fault-prone classes in the training set. Later, we randomly
combine one fault-prone group with one non-fault-prone
group to make one training subset. In this way, we have

FIGURE 6. BayesNet in Weka.

randomly created 30 training subsets. We use BayesNet6

as the training algorithm and apply the default setting on
Weka as shown in Figure 6. For example, in a TRN-based
dataset, each data point is a labeled (i.e., fault-prone or non-
fault-prone) file characterized by MTRN (i.e., MTRN−FDC,
MTRN−BP, MTRN−EGD, and MTRN−FNB). In a CO-based
dataset, each data point is a labeled file characterized byMCO.
The same train-predict process is repeated 30 times with
each time using a different training subset. We use all data
points collected from Release 2 as the test set. For example,
we use 8(MTRN) to represent a fault-proneness prediction
model using MTRN. As a result, for each program we have
constructed 180 (i.e., 30×6) fault-proneness prediction mod-
els including 30 8(MTRN), 30 8(MDCN), 30 8(MMDN), 30
8(MSTN), 30 8(MDN), and 30 8(MCO).

We use threemeasures, recall (defined in (1)), false positive
rate (defined in (2)), and F1 score (defined in (4)) to evaluate
the fault-proneness prediction effectiveness of each model.
In the first three equations, TP (true positive) is the number
of fault-prone modules that are correctly predicted, TN (true
negative) is the number of non-fault-prone modules that are
correctly predicted, FP (false positive) is the number of non-
fault-prone modules that are predicted as fault-prone, and FN
(false negative) is the number of fault-prone modules that are
incorrectly predicted as non-fault-prone.

Recall =
TP

TP+ FN
(1)

False Positive Rate (FPR) =
FP

FP+ TN
(2)

Precision =
TP

TP+ FP
(3)

6We use BayesNet in our experiment because it is robust to overfitting and
does not assume data independence. As amatter of fact, manymachine learn-
ing techniques such as neural networks [7], [37], [67], decision trees [6], [27],
[28], case-based reasoning [36], [38], [55], Naïve Bayes [15], [31], [44],
fuzzy logic [56], logistic regression [5], [9], [16], SVM [20], [25], [26],
random forests [39], [63], and so on have been used for predicting software
fault-proneness in the past. We want to emphasize that the focus of this
study is to evaluate prediction effectiveness of the metrics derived from
newly designed social networks. All these techniques can be used to train
our dataset. However, the selection of the training algorithm used in the
experiment is beyond the scope of this study.

VOLUME 7, 2019 63071

Y. Li et al.: Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction

F1 score = 2×
Precision× Recall
Precision+ Recall

(4)

For discussion purposes, let us assume there are 100 soft-
ware modules, of which 30 are faulty and 70 are non-faulty.
Assume also that a fault-proneness prediction model predicts
35 modules as fault-prone, 10 of which are actually non-
faulty. This also implies that among the 65 modules predicted
as non-fault-prone, 5 are actually fault-prone. Therefore,
TP = 25 (25 faulty modules are correctly predicted as fault-
prone), TN = 60 (60 non-faulty modules are correctly pre-
dicted as non-fault-prone), FP = 10 (ten non-faulty modules
are incorrectly predicted as fault-prone), and FN = 5 (five
faulty modules are incorrectly predicted as non-fault-prone).
Based on Equations (1) and (2), the recall is 25/(25 + 5) ≈
83.33% and the FPR is 10/(10 + 60) ≈ 14.29%. Based on
Equations (3) and (4), the precision is 25/(25+10)≈ 71.43%
and the F1 is (2× 71.43%× 83.33%)/(71.43%+ 83.33%)≈
76.92%. For two different fault-proneness prediction models
81 and 82, if 81 has a higher recall or F1 than 82, then it
can be said that 81 is more effective than 82 with respect
to recall or F1. If 81 has a lower FPR than 82, then it can
be said that 81 is more effective than 82 with respect to
FPR.

For each program, we compute and compare the
respective average recall and FPR of 30 8(MTRN),
30 8(MDCN), 30 8(MMDN), 30 8(MSTN), 30 8(MDN),
and 30 8(MCO). For example, regarding R2, if 8(MTRN)
has a higher average recall than 8(MDCN), then 8(MTRN)
is more effective than 8(MDCN) with respect to average
recall.

In addition, we employ the paired Wilcoxon signed-rank
test [60] to investigate R1 and R2. For example, regarding
R1, we can make the following null hypothesis with respect
to the computed Spearman rank correlation coefficient using
MTRN−Cen and the same coefficient using MDCN−Cen:

H0: The computed Spearman rank correlation coefficient
using MTRN−Cen is equal to or smaller than the computed
Spearman rank correlation coefficient usingMDCN−Cen. If H0
is rejected (i.e., the alternative hypothesis is accepted), then
it implies that MTRN−Cen is more correlated with the number
of post-released bugs than MDCN−Cen.

Regarding R2, we can make the following null hypothesis
with respect to the recall of 8(MTRN) and 8(MDCN):
H0: 8(MTRN) has equal or lower recall than 8(MDCN).

If H0 is rejected (i.e., the alternative hypothesis is accepted),
then it implies that 8(MTRN) will correctly predict more
fault-prone files than 8(MDCN). This also implies that
8(MTRN) is more effective than 8(MDCN) with respect to
recall.

In order to answer R3, we first propose an approach to
calibrate the edge weight of TRN and other networks. The
modified networks with calibrated edges are denoted as CaX
(e.g., CaTRN). Later, we investigate the relationship between
the centrality metrics derived from CaX and the number of
post-released bugs, as well as the performance of predicting
fault-proneness using CaX-based metrics.

TABLE 11. Confidence that MTRN−Cen is more correlated with the
number of bugs than the corresponding MDCN−Cen, MMDN−Cen,
MSTN−Cen, and MDN−Cen.

D. RESULTS
To answer R1, we use the Spearman rank correlation coef-
ficient to measure the correlation between each metric and
the number of post-released bugs in a file.7 The results are
shown in TABLE 5 through TABLE 10. Each entry in the
tables gives the coefficient between a metric and the number
of bugs. For example, let us look at the first row of TABLE 5.
The correlation between metric MTRN−FDC and the number
of bugs is 0.79, and the correlation between MDCN−FDC and
the number of bugs is 0.73. The corresponding correlations
between metrics MMDN−FDC, MSTN−FDC, andMDN−FDC and
the number of bugs are 0.62, 0.71, and 0.63, respectively.
Therefore, the centrality metric, MFDC, derived from TRN
(i.e., MTRN−FDC) has the strongest correlation with the num-
ber of bugs compared to the corresponding MFDC derived
from DCN (i.e., MDCN−FDC), MDN (i.e., MMDN−FDC), STN
(i.e., MSTN−FDC), and DN (i.e., MDN−FDC). Let us now look
at the second column of the same table. The correlation
between MTRN−BP and the number of bugs is 0.55, the cor-
relation between MTRN−EGD and the number of bugs is 0.54,
and the correlation between MTRN−FNB and the number of
bugs is 0.44. Therefore, the MFDC derived from TRN (i.e.,
MTRN−FDC) has the strongest correlation with the number
of bugs compared to MTRN−BP, MTRN−EGD, and MTRN−FNB
which are derived from the same TRN.

In general, from TABLE 5 to TABLE 10, we observe that:
(1) MTRN−FDC has the strongest correlation (i.e., 0.79) with
the number of bugs among all metrics; (2) for any MCen
derived from TRN, MTRN−Cen has the strongest correlation
with the number of bugs compared to the correspondingMCen
derived fromDCN (i.e.,MDCN−Cen),MDN (i.e.,MMDN−Cen),
STN (i.e., MSTN−Cen), and DN (i.e., MDN−Cen).
In addition, we use the paired Wilcoxon signed-rank

test to investigate R1 from a statistical point of view.
TABLE 11 presents the results of a Wilcoxon signed-rank
test showing the confidence with which it can be claimed
that MTRN−Cen is more correlated with the number of bugs
than the corresponding MDCN−Cen, MMDN−Cen, MSTN−Cen,
and MDN−Cen. Each entry in the table strengthens the con-
viction that the alternative hypothesis stands. Furthermore,
for each program in TABLE 11, at the 0.05 level, the

7Hereinafter, ‘‘bugs’’ will be used to refer specifically to post-release bugs.

63072 VOLUME 7, 2019

Y. Li et al.: Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction

TABLE 12. Prediction effectiveness evaluation of 8(MCaTRN), 8(MCaDCN),
8(MCaMDN), 8(MCaSTN), and 8(MCaDN) with respect to average Recall,
average FPR, and average F1 score for Camel 1.4.0.

TABLE 13. Prediction effectiveness evaluation of 8(MTRN), 8(MDCN),
8(MMDN), 8(MSTN), 8(MDN), and 8(MCO) with respect to average Recall,
average FPR, and average F1 score for Flume 1.5.0.

correlation coefficient distributions are significantly different
between (1) MTRN−Cen and MDCN−Cen, (2) MTRN−Cen and
MMDN−Cen, (3)MTRN−Cen andMSTN−Cen, and (4)MTRN−Cen
and MDN−Cen. For example, for Camel 1.4.0, it can be said
with 98.98% confidence that MTRN−Cen is more correlated
with the number of bugs than the corresponding MDCN−Cen.
Let us look at the third row of TABLE 11; for Flume 1.5.0,
it can be said with 97.97%, 99.98%, 98.97%, and 99.97%
confidence that MTRN−Cen is more correlated with the num-
ber of bugs than the corresponding MDCN−Cen, MMDN−Cen,
MSTN−Cen, and MDN−Cen. In general, from TABLE 11 it
can be claimed with high confidence (at least 97%) that
MTRN−Cen is more correlated with the number of bugs than
the corresponding MDCN−Cen, MMDN−Cen, MSTN−Cen, and
MDN−Cen for all six programs. If we change our alternative
hypothesis to ‘‘MTRN−Cen is equally/more correlated with
the number of bugs as/than the corresponding MDCN−Cen,
MMDN−Cen, MSTN−Cen, and MDN−Cen,’’ then the confidence
is 100% for almost very scenario.
Summary With Respect to R1:
• Metrics derived from the proposed TRN are significant
indicators for the number of bugs in a file.

• Metrics derived from the proposed TRN are generally
more correlated to the number of bugs than correspond-
ing metrics derived from DCN, MDN, STN, and DN.

• The FDCmetric derived from TRN, MTRN−FDC, has the
strongest correlation with the number of bugs among
all metrics used in our case studies. This also indicates
that for a software module (a file in our case), (1)
the number of direct interactions with its contributing
software developers, (2) the contribution frequency of
these developers, (3) the number of modules with which
it has a direct dependency relationship (both functional

TABLE 14. Prediction effectiveness evaluation of 8(MTRN), 8(MDCN),
8(MMDN), 8(MSTN), 8(MDN), and 8(MCO) with respect to average Recall,
average FPR, and average F1 score for Tika 1.6.

TABLE 15. Prediction effectiveness evaluation of 8(MTRN), 8(MDCN),
8(MMDN), 8(MSTN), 8(MDN), and 8(MCO) with respect to average Recall,
average FPR, and average F1 score for Gedit 2.25.4.

and logical), and (4) their mutual dependence intensity,
jointly have a significant impact on the quality of the
module itself.

To answer R2, for each program we compute and com-
pare the average recall, FPR, and F1 score of 8(MTRN),
8(MDCN),8(MMDN),8(MSTN),8(MDN), and8(MCO). The
results are shown in TABLE 12 through TABLE 18. For
example, in TABLE 17, the average recall, FPR, F1 score
of 8(MTRN) are 69.79%, 4.60%, and 43.86%, respectively.
In the same table, the average recall, FPR, F1 score of
8(MDCN) are 62.95%, 4.86%, and 36.07%, respectively.
Therefore,8(MTRN) has a larger average recall, a lower aver-
age FRP, and a higher F1 score compared to 8(MDCN). From
TABLE 17, we observe that8(MTRN) has the highest average
recall (i.e., 69.79%), the lowest average FPR (i.e., 4.60%),
and the highest average F1 score (i.e., 43.86%) among all
fault-proneness prediction models in the table. The same also
applies to TABLE 18 and TABLE 17 where 8(MTRN) has
the highest average recall (i.e., 87.01%, 64.60%, 78.40%,
61.09%, and 72.20%), the lowest average FPR (i.e., 4.51%,
2.10%, 4.56%, 3.05%, and 3.15%), and the highest F1 score
(i.e., 72.19%, 59.42%, 58.03%, 46.95%, and 62.67%) among
all fault-proneness prediction models in these two tables.

Once again, from a statistical point of view, we employ the
paired Wilcoxon signed-rank test to compare the recall and
FPR of 8(MTRN) against 8(MDCN), 8(MMDN), 8(MSTN),
8(MDN), and 8(MCO). TABLE 18 presents the results of
a Wilcoxon signed-rank test showing the confidence with
which it can be claimed that 8(MTRN) is more effective
(in terms of recall, FPR, and F1 score) than 8(MDCN),
8(MMDN), 8(MSTN), 8(MDN), and 8(MCO). Each entry
in the table gives the assurance with which the alternative
hypothesis stands. Furthermore, for each program in TABLE

VOLUME 7, 2019 63073

Y. Li et al.: Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction

TABLE 16. Prediction effectiveness evaluation of 8(MTRN), 8(MDCN),
8(MMDN), 8(MSTN), 8(MDN), and 8(MCO) with respect to average Recall,
average FPR, and average F1 score for Nginx 1.3.0.

TABLE 17. Prediction effectiveness evaluation of 8(MTRN), 8(MDCN),
8(MMDN), 8(MSTN), 8(MDN), and 8(MCO) with respect to average Recall,
average FPR, and average F1 score for Redis 2.6.0.8.

TABLE 18. Confidence that 8(MTRN) is more effective than 8(MDCN),
8(MMDN), 8(MSTN), 8(MDN), and 8(MCO) with respect to Recall, FPR, and
F1 score.

18, at the 0.05 level, the recall/FPR/F1 score distributions are
significantly different between (1) 8(MTRN) and 8(MDCN),
(2) 8(MTRN) and 8(MMDN), (3) 8(MTRN) and 8(MSTN),
(4) 8(MTRN) and 8(MDN), and (5) 8(MTRN) and 8(MCO),
respectively. To take an example from TABLE 18, it can be
said with 99.98%, 99.99%, 99.64% confidence that8(MTRN)
has a higher recall, lower FPR, and higher F1 score respec-
tively, than 8(MDCN) for Camel 1.4.0. It also implies that
8(MTRN) is more effective than 8(MDCN) in terms of
recall, FPR, and F1 score, respectively. In general, from
TABLE 18 we observe that it can be said with at least
99% confidence that 8(MTRN) has a higher recall, lower
FPR, and higher F1 score than the corresponding 8(MDCN),
8(MMDN), 8(MSTN), 8(MDN), and 8(MCO) for all six pro-
grams. If we change our alternative hypothesis to consider

equalities, then the confidence is 100% for almost every
scenario.
Summary With Respect to R2:
Fault-proneness prediction models using network node

centrality metrics derived from the proposed TRN are more
effective than prediction models using the same metrics
derived fromDCN,MDN, STN, and DN as well as prediction
models using the ten commonmetrics, in terms of recall, FPR,
and F1 score.

To answer R3, we propose CaTRN. The motivation behind
the construction of the CaTRN is to investigate whether
integrating additional factors that describe the development
effort in the current TRN will better present the interac-
tions between developers and modules and therefore fur-
ther improve the fault-proneness prediction using the metrics
derived from CaTRN. Consequently, in order to construct
a CaTRN, for each type of relation in a TRN, a particular
mechanism is applied to further calibrate the corresponding
relation strength (i.e., the weight on the corresponding edges).

Specifically, we introduce developer risk score (DRS) [40],
which computes the risk of a developer working on the mod-
ules, and use it for further edge weight calibration. DRS is
based on two heuristics: (1) with respect to a given program,
the more frequently a developer has introduced bugs in past
releases, and the greater the severity of those bugs, the higher
the risk that this program will contain a bug if this same
developer makes a commit on the current release; and (2) the
greater the complexity of a program, the greater the difficulty
a developer has in working on this program and the higher
the risk that the developer will introduce a bug into the
program. For a given software system, assume that mj is the
jth module in the system, and ck is the kth bug-introducing
commit made by developer d in the jth module. We retrieve
the bug severity of each bug-introducing commit (i.e., critical,
major, minor, or trivial) from JIRA [33] and use the function
SeverityScore(fj, ck, d, R−1) to map it to one of the follow-
ing scores: 4 (critical), 3 (major), 2 (minor), and 1 (trivial).
A score of 4 is assigned to the variable MaxSeverityScore.
The bug severity ratio of the kth bug-introducing commit
made by developer d in the jth module in release R−1 is
defined as:

SeverityRatio(mj, ck , d,R− 1)

=
SeverityScore(mj, ck , d,R− 1)

MaxSeverityScore
(5)

The overall complexity value of the jth module in release
R−1 is computed by Complexity(mj, R−1) as the sum of nor-
malized LOC [51], McCabe Complexity [45], and all six CK
metrics [18]. TotalCommits(d, R−1) gives the total number
of commits made by developer d in release R−1. DRS(d, R),
the developer risk score of developer d at release R, is defined
as:

DRS(d,R) =

∑ SeverityRatio(mj,ck ,d,R−1)
Complexity(mj,R−1)

TotalCommits(d,R− 1)
(6)

63074 VOLUME 7, 2019

Y. Li et al.: Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction

FIGURE 7. A CaTRN with three developers and four modules.

To calibrate the weight of a developer contribution edge,
we multiply the original weight (i.e., the number of commits
made by a developer) by the DRS value8 of this devel-
oper. To calibrate the weight of a module dependency edge,
we multiply the original weight (i.e., the quantified depen-
dency value for a pair of modules) by the sum of DRS
values of distinct developers who have worked on the two
modules. To calibrate the weight of a developer collaboration
edge, we multiply the original weight (i.e., the number of
modules on which two developers have both worked) by the
sum of DRS values of these two developers. Let us assume
the DRS values for developers Bob, Dan, and Jim are 0.5,
1.2, and 3, respectively. The CaTRN is shown in Figure 7.
Compared to TRN, CaTRN contains additional information
by considering developer risk, program complexity, and bug
severity, thus describing the development effort from a more
comprehensive perspective.

The same calibrating strategy can also apply to DCN,
MDN, STN, and DN. As a result, a total of seven modi-
fied networks are obtained (i.e., CaTRN, CaDCN, CaMDN,
CaSTN, and CaDN). Once we have these modified networks,
the corresponding network centrality metrics from each mod-
ified network are derived, respectively. Then, we investigate
R3 by re-conducting similar data analysis which has been
used to investigate R1 and R2. TABLE 19 through TABLE
24 present the Spearman rank correlation coefficient used to
measure the correlation between each metric derived from
the corresponding modified networks and the number of
bugs in a file. For example, in the first row of TABLE 19,
the correlation between the FDCmetric derived from CaTRN
(i.e., MCaTRN−FDC) and the number of bugs is 0.87. As you
may recall, the same FDC metric derived from TRN (i.e.,
MTRN−FDC) in TABLE 5 is 0.79. This indicates that the FDC
metric derived from the modified TRN (i.e., MCaTRN−FDC)
that consider calibrated edgeweight has a stronger correlation
with the number of bugs than the same FDC metric derived
from the original TRN that does not.

In general, from TABLE 19 to TABLE 24, we observe
that: (1) the metrics derived from modified networks (i.e.,
MCaX−Cen) have stronger correlation with the number of

8For a newly joined developer, its DRS value is set to the median of the
DRS value set which is currently available.

TABLE 19. Correlation analysis using spearman rank correlation
coefficient for Camel 1.4.0 where correlation is significant at the
0.05 level.

TABLE 20. Correlation analysis using spearman rank correlation
coefficient for Flume 1.5.0 where correlation is significant at the
0.05 level.

TABLE 21. Correlation analysis using spearman rank correlation
coefficient for Tika 1.6 where correlation is significant at the 0.05 level.

TABLE 22. Correlation analysis using spearman rank correlation
coefficient for Gedit 2.25.4 where correlation is significant at the
0.05 level.

TABLE 23. Correlation analysis using spearman rank correlation
coefficient for Nginx 1.3.0 where correlation is significant at the
0.05 level.

TABLE 24. Correlation analysis using spearman rank correlation
coefficient for Redis 2.6.0.8 where correlation is significant at the
0.05 level.

bugs than the corresponding metrics derived from the orig-
inal networks (i.e., MX−Cen) as shown from TABLE 5 to
TABLE 10; (2) MCaTRN−FDC has the strongest correlation
with the number of bugs among all metrics derived frommod-
ified networks; and (3) for any MCen derived from CaTRN,
MCaTRN−Cen, it has the strongest correlation with the number
of bugs compared to the corresponding MCen derived from
CaDCN (i.e., MCaDCN−Cen), CaMDN (i.e., MCaMDN−Cen),
CaSTN (i.e., MCaSTN−Cen), and CaDN (i.e., MCaDN−Cen).
In addition, the results of the paired Wilcoxon signed-rank

test in TABLE 25 indicate that with high confidence (at
least 98%), MCaX−Cen is more correlated with the num-
ber of bugs than MX−Cen. The confidence increases to
100% for almost every scenario when considering equalities.

VOLUME 7, 2019 63075

Y. Li et al.: Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction

TABLE 25. Confidence that MCaX−Cen is more correlated to the number
of bugs than the corresponding MX−Cen.

TABLE 26. Prediction effectiveness evaluation of 8(MCaTRN), 8(MCaDCN),
8(MCaMDN), 8(MCaSTN), and 8(MCaDN) with respect to average Recall,
average FPR, and average F1 score for Camel 1.4.0.

TABLE 27. Prediction effectiveness evaluation of 8(MCaTRN), 8(MCaDCN),
8(MCaMDN), 8(MCaSTN), and 8(MCaDN) with respect to average Recall,
average FPR, and average F1 score for Flume 1.5.0.

In general, metrics derived from the modified networks that
consider calibrated edge weights are more correlated with
the number of bugs than the same metrics derived from the
corresponding networks that do not.

Similarly, we also compute the average recall, the average
FPR, and the average F1 score of 8(MCaTRN), 8(MCaDCN),
8(MCaMDN), 8(MCaSTN), and 8(MCaDN). The results are
shown in TABLE 26 through TABLE 31. For example,
in TABLE 26, the average recall, FPR, and F1 score of
8(MCaTRN) are 71.50%, 4.59%, and 44.82%, respectively.
As stated previously, the average recall, FRP, and F1 score
of the corresponding 8(MTRN) in TABLE 12 are 69.79%,
4.60%, and 43.86%, respectively. This indicates that the fault-
proneness prediction models based on modified TRN that
consider calibrated edge weights (i.e., 8(MCaTRN)) are more
effective than the models based on the corresponding TRN
that do not (i.e., 8(MTRN)) in terms of average recall, FPR,
and F1 score.

In general, from TABLE 26 to TABLE 31, we observe that:
(1) fault-proneness prediction models based on modified net-
works that consider calibrated edge weights (i.e., 8(MCaX))
are more effective than the prediction models based on
the corresponding networks that do not (i.e., 8(MX)) as
shown from TABLE 12 to TABLE 17 in terms of aver-
age recall, FPR, and F1 score; and (2) 8(MCaTRN) has the

TABLE 28. Prediction effectiveness evaluation of 8(MCaTRN), 8(MCaDCN),
8(MCaMDN), 8(MCaSTN), and 8(MCaDN) with respect to average Recall,
average FPR, and average F1 score for Tika 1.6.

TABLE 29. Prediction effectiveness evaluation of 8(MCaTRN), 8(MCaDCN),
8(MCaMDN), 8(MCaSTN), and 8(MCaDN) with respect to average Recall,
average FPR, and average F1 score for Gedit 2.25.4.

TABLE 30. Prediction effectiveness evaluation of 8(MCaTRN), 8(MCaDCN),
8(MCaMDN), 8(MCaSTN), and 8(MCaDN) with respect to average Recall,
average FPR, and average F1 score for Nginx 1.3.0.

TABLE 31. Prediction effectiveness evaluation of 8(MCaTRN), 8(MCaDCN),
8(MCaMDN), 8(MCaSTN), and 8(MCaDN) with respect to average Recall,
average FPR, and average F1 score for Redis 2.6.0.8.

highest average recall, FPR, and F1 score among all modi-
fied networks. Moreover, the results of the paired Wilcoxon
signed-rank test in TABLE 32 indicate that with high confi-
dence (at least 96%), 8(MCaX) is more effective than 8(MX)
in terms of recall, FPR, and F1 score. If we change our alter-
native hypothesis to consider equalities, then the confidence
is 100% for almost every scenario.
Summary With Respect to R3:
• The developer risk score (DRS), which takes bug sever-
ity, program complexity, and development difficulty
into account, contributes to the network refinement and
improves the effectiveness of software-fault proneness
prediction.

63076 VOLUME 7, 2019

Y. Li et al.: Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction

TABLE 32. Confidence 8(MCaX) is more effective than the
corresponding 8(MX).

• Metrics derived from the modified network that con-
siders calibrated edge weight using DRS are generally
more correlated to the number of bugs than the same
metrics derived from the corresponding networks that do
not consider calibrated edge weight.

• Software fault-proneness prediction models using met-
rics derived from the modified networks that consider
calibrated edgeweight aremore effective than prediction
models using the same metrics derived from the corre-
sponding networks that do not.

VI. THREATS TO VALIDITY
A. INTERNAL VALIDITY
The data analysis techniques used in Section V are suitable
and commonly adopted for measuring the effectiveness of
metrics in predicting software fault-proneness, but by them-
selves they do not provide a complete picture of the prediction
performance. Therefore, we can only observe correlation
through statistical measures, not causation. In order to inves-
tigate possible causal effects, a root-cause analysis along each
variable still needs to be carried out. During the experiment
we apply oversampling using SMOTE which may lead to
overfitting. First, unlike traditional oversampling methods
which simply duplicates minority classes, SMOTE operates
in the ‘‘feature space’’ rather than the ‘‘data space’’ and
generates synthetic samples of the minority classes. In this
way, it effectively forces the decision region of the minority
class to become more general, partially solving the general-
ization/overfitting problem. Second, we only apply SMOTE
on the training data while the test data remain untainted.
Third, we have tried random oversampling and the prediction
performance is not ideal due to the impact of overfitting.
In other words, SMOTE is more appropriate and effective to
handle data imbalance and overfitting in our case. Our work
lays the foundation for future investigations, by identifying

potential connections between social interactions and soft-
ware quality.

B. EXTERNAL VALIDITY
Only six open-source programs are used to investigate the
four research questions. Therefore, our conclusion may not
be generalized either to projects developed by other program-
ming languages or to those that are commercialized. Our
program selection is based on the information availability
for the construction of TRN. To mitigate these threats, our
study needs to be repeated on a wider variety of programs.
Additionally, all data are collected from an issue tracking
system, JIRA [33]. However, the information extracted from
the issue tracking system may be incomplete. This potential
threat can be alleviated by conducting more thorough data
collection in future work. The developers may not be as well
trained and experienced as average professional program-
mers. In this paper, we also use consecutive releases which
may prompt replication of same bugs. However, using con-
secutive releases has been a common and successful practice
in SFP. Our intention has never been catching similar or
same bugs (according to some static code metrics extracted
from modules) in the next release but by studying the impact
of interaction between connected software developers and
modules as well as the interaction within connected develop-
ers/modules (i.e., building a TRN) onmodule fault-proneness
to guide us identify fault-prone modules which do not neces-
sarily belong the same type but are due to a serial of combined
social and technical influence during development.

VII. CONCLUSIONS AND FUTURE WORK
Previous studies have shown that the developer contribu-
tion relation, module dependency relation, and developer
collaboration relation have been used to build networks for
software fault-proneness prediction. However, none of these
studies consider the combined influence of all three relations.
Motivated by this, we integrate all three relations into one
comprehensive network, our proposed tri-relation network
(TRN). In addition, four network node centrality metrics (i.e.,
MFDC, MBP, MEDG, and MFNB) are derived from the corre-
sponding network to predict the fault-proneness of a given
file on six programs. The results of our study indicate that (1)
TRN-based centrality metrics are more correlated with the
number of bugs than the corresponding DCN-, MDN-, STN-,
and DN-based centrality metrics as well as the ten software
metrics that are commonly used for software fault-proneness
prediction; (2) fault-proneness prediction models using
TRN-based centrality metrics outperform the models using
DCN-,MDN-, STN-, andDN-based centralitymetrics as well
as the models based on ten commonly used software metrics;
(3) centrality metrics derived from a modified network that
consider calibrated edge weight using developer risk score
are more correlated to the number of bugs than those derived
from the same network that does not; and (4) fault-proneness
prediction models using centrality metrics derived from a
modified network outperform the models using centrality

VOLUME 7, 2019 63077

Y. Li et al.: Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction

metrics derived from the same network that does not. In the
future, we plan to repeat our study on a wider variety of
programs and include additional software metrics for com-
parison to further validate the effectiveness of our TRN-based
metrics. We also intend to search for potential intelligent
algorithms for better prediction model training and further
network refinement. In addition, it would be interesting to
investigate whether our TRN-based centrality metrics can
be used for cross-project software fault-proneness prediction
when the historical information is limited or unavailable. Last
but not least, we also plan to tailor TRN to the needs of
industrial enterprise.

REFERENCES
[1] Apache Camel. Accessed: Mar. 23, 2017. [Online]. Available:

http://camel.apache.org/
[2] Apache Flume. Accessed: Mar. 23, 2017. [Online]. Available:

http://flume.apache.org/
[3] Apache Tika. Accessed: Mar. 23, 2017. [Online]. Available:

http://tika.apache.org/
[4] E. Arisholm and L. C. Briand, ‘‘Predicting fault-prone components in a

java legacy system,’’ in Proc. 5th ACM/IEEE Int. Symp. Empirical Softw.
Eng., Rio de Janeiro, Brazil, Sep. 2006, pp. 8–17.

[5] P. Bellini, I. Bruno, P. Nesi, and D. Rogai, ‘‘Comparing fault-proneness
estimation models,’’ in Proc. 10th IEEE Int. Conf. Eng. Complex Comput.
Syst., Shanghai, China, Jun. 2005, pp. 205–214.

[6] A. Bernstein, J. Ekanayake, and M. Pinzger, ‘‘Improving defect prediction
using temporal features and non linear models,’’ in Proc. 9th Int. Workshop
Princ. Softw. Evol., Conjunction 6th ESEC/FSE Joint Meeting, Dubrovnik,
Croatia, Sep. 2007, pp. 11–18.

[7] M. E. R. Bezerra, A. L. I. Oliveira, and S. R. L. Meira, ‘‘A constructive
RBF neural network for estimating the probability of defects in software
modules,’’ in Proc. Int. Joint Conf. Neural Netw., Orlando, FL, USA,
Aug. 2007, pp. 2869–2874.

[8] S. P. Borgatti, M. G. Everett, and L. C. Freeman, ‘‘UCINET for windows:
Software for social network analysis,’’ Analytic Technol., Harvard, MA,
USA, Tech. Rep., 2002.

[9] L. C. Briand, S. Morasca, and V. R. Basili, ‘‘Defining and validating
measures for object-based high-level design,’’ IEEE Trans. Softw. Eng.,
vol. 25, no. 5, pp. 722–743, Sep./Oct. 1999.

[10] C. L. Briand, J. Wüst, J. W. Daly, and D. V. Porter, ‘‘Exploring the
relationships between design measures and software quality in object-
oriented systems,’’ J. Syst. Softw., vol. 51, no. 3, pp. 245–273, May 2000.

[11] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu, ‘‘Putting it all
together: Using socio-technical networks to predict failures,’’ in Proc. 20th
Int. Symp. Softw. Rel. Eng., Mysuru, India, Nov. 2009, pp. 109–119.

[12] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, ‘‘Don’t touch
my code!: Examining the effects of ownership on software quality,’’ in
Proc. 19th ACM SIGSOFT Symp. 13th Eur. Conf. Found. Softw. Eng.,
Szeged, Hungary, Sep. 2011, pp. 4–14.

[13] P. Bonacich, ‘‘Power and centrality: A family of measures,’’ Amer.
J. Sociol., vol. 92, no. 5, pp. 1170–1182, Mar. 1987.

[14] U. Brandes and T. Erlebach, Network Analysis: Methodological Founda-
tions. Berlin, Germany: Springer, 2005.

[15] C. Catal, U. Sevim, andB.Diri, ‘‘Practical development of an eclipse-based
software fault prediction tool using Naive Bayes algorithm,’’ Expert Syst.
Appl., vol. 38, no. 3, pp. 2347–2353, Mar. 2011.

[16] M. Cataldo, J. Herbsleb, and K. M. Carley, ‘‘Socio-technical congruence:
A framework for assessing the impact of technical and work dependencies
on software development,’’ in Proc. 2nd ACM-IEEE Int. Symp. Empirical
Softw. Eng. Meas., Kaiserslautern, Germany, Oct. 2008, pp. 2–11.

[17] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, ‘‘Software
dependencies, work dependencies, and their impact on failures,’’ IEEE
Trans. Softw. Eng., vol. 35, no. 6, pp. 864–878, Nov./Dec. 2009.

[18] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented
design,’’ IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994.

[19] G. Denaro and M. Pezz, ‘‘An empirical evaluation of fault-proneness mod-
els,’’ in Proc. 24th Int. Conf. Softw. Eng., Orlando, FL, USA, May 2002,
pp. 241–251.

[20] K. O. Elish and M. O. Elish, ‘‘Predicting defect-prone software modules
using support vector machines,’’ J. Syst. Softw., vol. 81, no. 5, pp. 649–660,
May 2008.

[21] J. Ell, ‘‘Identifying failure inducing developer pairs within developer
networks,’’ in Proc. Int. Conf. Softw. Eng., San Francisco, CA, USA,
May 2013, pp. 1471–1473.

[22] L. C. Freeman, ‘‘Centrality in social networks: Conceptual clarification,’’
Social Netw., vol. 1, no. 3, pp. 215–239, 1978.

[23] Gedit. Accessed: Feb. 11, 2017. [Online]. Available: https://wiki.
gnome.org/Apps/Gedit

[24] R. A. Ghosh, ‘‘Clustering and dependencies in free/open source soft-
ware development: Methodology and tools,’’ First Monday, vol. 8, no. 4,
pp. 1–27, Apr. 2003.

[25] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, ‘‘Method-level bug
prediction,’’ in Proc. ACM-IEEE Int. Symp. Empirical Softw. Eng. Meas.,
Lund, Sweden, Sep. 2012, pp. 171–180.

[26] I. Gondra, ‘‘Applying machine learning to software fault-proneness pre-
diction,’’ J. Syst. Softw., vol. 81, vol. 2, pp. 186–195, Feb. 2008.

[27] L. Guo, Y. Ma, B. Cukic, and H. Singh, ‘‘Robust prediction of fault-
proneness by random forests,’’ in Proc. 15th Int. Symp. Softw. Rel. Eng.,
Saint-Malo, France, Nov. 2004, pp. 417–428.

[28] T. Gyimothy, R. Ferenc, and I. Siket, ‘‘Empirical validation of object-
orientedmetrics on open source software for fault prediction,’’ IEEE Trans.
Softw. Eng., vol. 31, no. 10, pp. 897–910, Oct. 2005.

[29] R. A. Hanneman andM.Riddle, ‘‘Introduction to social networkmethods,’’
Univ. California, Riverside, CA, USA, Tech. Rep., 2005.

[30] J. Howison, K. Inoue, and K. Crowston, ‘‘Social dynamics of free and
open source team communications,’’ in Proc. Int. Conf. Open Source Syst.,
Jun. 2006, pp. 319–330.

[31] Y. Jiang, B. Cukic, and T. Menzies, ‘‘Fault prediction using early lifecycle
data,’’ in Proc. 18th IEEE Int. Symp. Softw. Rel., Trollhattan, Sweden,
Nov. 2007, pp. 237–246.

[32] Y. Jiang, B. Cuki, T. Menzies, and N. Bartlow, ‘‘Comparing design
and code metrics for software quality prediction,’’ in Proc. 4th Int.
Workshop Predictor Models Softw. Eng., Leipzig, Germany, May 2008,
pp. 11–18.

[33] JIRA. Accessed: May 2, 2017. [Online]. Available: https://www.
atlassian.com/software/jira

[34] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, and N. Goel, ‘‘Early
quality prediction: A case study in telecommunications,’’ IEEE Softw.,
vol. 13, no. 1, pp. 65–71, Jan. 1996.

[35] T. M. Khoshgoftaar, E. B. Allen, and J. Deng, ‘‘Using regression trees to
classify fault-prone software modules,’’ IEEE Trans. Rel., vol. 51, no. 4,
pp. 455–462, Dec. 2002.

[36] T. M. Khoshgoftaar, N. Seliya, and N. Sundaresh, ‘‘An empirical study
of predicting software faults with case-based reasoning,’’ Softw. Qual. J.,
vol. 14, no. 2, pp. 85–111, Jun. 2006.

[37] T. M. Khoshgoftaar and R. M. Szabo, ‘‘Using neural networks to pre-
dict software faults during testing,’’ IEEE Trans. Rel., vol. 45, no. 3,
pp. 456–462, Sep. 1996.

[38] T. M. Khoshgoftaar, Y. Xiao, and K. Gao, ‘‘Software quality assess-
ment using a multi-strategy classifier,’’ Inf. Sci., vol. 259, pp. 555–570,
Feb. 2014.

[39] P. Knab, M. Pinzger, and A. Bernstein, ‘‘Predicting defect densities in
source code files with decision tree learners,’’ in Proc. Int. Workshop
Mining Softw. Repositories, Shanghai, China, May 2006, pp. 119–125.

[40] S.-Y. Lee and Y. Li, ‘‘DRS: A developer risk metric for better predicting
software fault-proneness,’’ in Proc. 2nd Int. Conf. Trustworthy Syst. Appl.,
Hualien, Taiwan, Jul. 2015, pp. 120–127.

[41] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, ‘‘Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,’’ IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496,
Jul./Aug. 2008.

[42] Y. Li, ‘‘Applying social network analysis to software fault-proneness
prediction,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. Texas
Dallas, Richardson, TX, USA, Aug. 2017. [Online]. Available:
http://libtreasures.utdallas.edu/xmlui/handle/10735.1/5486

[43] R. Li and S. Wang, ‘‘An empirical study for software fault-proneness pre-
diction with ensemble learning models on imbalanced data sets,’’ J. Softw.,
vol. 9, no. 3, pp. 697–704, Mar. 2014.

[44] H. Lu andB. Cukic, ‘‘An adaptive approachwith active learning in software
fault prediction,’’ in Proc. 8th Int. Conf. Predictive Models Softw. Eng.,
Lund, Sweden, Sep. 2012, pp. 79–88.

[45] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng.,
vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[46] A. Meneely, L. Williams, W. Snipes, and J. Osborne, ‘‘Predicting failures
with developer networks and social network analysis,’’ in Proc. 16th ACM
SIGSOFT Int. Symp. Found. Softw. Eng., Atlanta, GA, USA, Nov. 2008,
pp. 13–23.

63078 VOLUME 7, 2019

Y. Li et al.: Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction

[47] N. Nagappan and T. Ball, ‘‘Use of relative code churn measures to predict
system defect density,’’ in Proc. 27th Int. Conf. Softw. Eng., St. Louis, MO,
USA, May 2005, pp. 284–292.

[48] N. Nagappan, B. Murphy, and V. Basili, ‘‘The influence of organizational
structure on software quality,’’ in Proc. 30th Int. Conf. Softw. Eng., Leipzig,
Germany, May 2008, pp. 521–530.

[49] Nginx. Accessed: Jan. 12, 2017. [Online]. Available: https://nginx.org/en/
[50] T. H. D. Nguyen, B. Adams, and A. E. Hassan, ‘‘Studying the impact of

dependency network measures on software quality,’’ in Proc. IEEE Int.
Conf. Softw. Maintenance, Timisoara, Romania, Sep. 2010, pp. 1–10.

[51] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm, ‘‘A SLOC counting
standard,’’ inProc. 22nd Int. ForumCOCOMOSyst./Softw. Cost Modeling,
Los Angeles, CA, USA, Oct. 2007, pp. 1–16.

[52] M. Ohira, N. Ohsugi, T. Ohoka, and K.-I. Matsumoto, ‘‘Accelerating cross-
project knowledge collaboration using collaborative filtering and social
networks,’’ in Proc. Int. Workshop Mining Softw. Repositories, St. Louis,
MO, USA, May 2005, pp. 1–5.

[53] N. Ohlsson and H. Alberg, ‘‘Predicting fault-prone software modules in
telephone switches,’’ IEEE Trans. Softw. Eng., vol. 22, no. 12, pp. 886–894,
Dec. 1996.

[54] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, ‘‘Predicting the location
and number of faults in large software systems,’’ IEEE Trans. Softw. Eng.,
vol. 31, no. 4, pp. 340–355, Apr. 2005.

[55] E. Paikari, B. Sun, G. Ruhe, and E. Livani, ‘‘Customization support for
CBR-based defect prediction,’’ in Proc. 7th Int. Conf. Predictive Models
Softw. Eng., Banff, AB, Canada, Sep. 2011, p. 16.

[56] A. K. Pandey and N. K. Goyal, ‘‘Predicting fault-prone software module
using data mining technique and fuzzy logic,’’ Int. J. Comput. Commun.
Technol., vol. 2, no. 2, pp. 56–63, Dec. 2010.

[57] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, ‘‘Do too many cooks spoil
the broth? Using the number of developers to enhance defect prediction
models,’’ Empirical Softw. Eng., vol. 13, no. 5, pp. 539–559, Oct. 2008.

[58] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, ‘‘Programmer-based fault pre-
diction,’’ in Proc. 6th Int. Conf. Predictive Models Softw. Eng., Timisoara,
Romania, Sep. 2010, p. 19.

[59] M. Pinzger, N. Nagappan, and B. Murphy, ‘‘Can developer-module net-
works predict failures?’’ in Proc. 16th ACM SIGSOFT Int. Symp. Found.
Softw. Eng., Atlanta, GA, USA, Nov. 2008, pp. 2–12.

[60] R. L. Ott and M. l. Longnecker, An Introduction to Statistical Methods and
Data Analysis, 4th ed. Independence, KY, USA: Duxbury Press, 1993.

[61] Redis. Accessed: Feb. 12, 2018. [Online]. Available: https://redis.io/
[62] A. Sarma, L. Maccherone, P. Wagstrom, and J. Herbsleb, ‘‘Tesseract:

Interactive visual exploration of socio-technical relationships in software
development,’’ in Proc. IEEE 31st Int. Conf. Softw. Eng., Vancouver, BC,
Canada, May 2009, pp. 22–33.

[63] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, ‘‘Evaluating com-
plexity, code churn, and developer activity metrics as indicators of software
vulnerabilities,’’ IEEE Trans. Softw. Eng., vol. 37, no. 6, pp. 772–787,
Nov./Dec. 2011.

[64] A. Simpson, ‘‘Changeset based developer communication to detect soft-
ware failures,’’ in Proc. 35th IEEE Int. Conf. Softw. Eng., San Francisco,
CA, USA, May 2013, pp. 1468–1470.

[65] C. Spearman, ‘‘The proof and measurement of association between two
things,’’ Amer. J. Psychol., vol. 15, no. 1, pp. 72–101, Jan. 1904.

[66] G. Tassey, ‘‘The economic impacts of inadequate infrastructure for soft-
ware testing,’’ Nat. Inst. Standards Technol., Gaithersburg, MD, USA,
Planning Rep. 02-3, May 2002.

[67] M. M. T. Thwin and T.-S. Quah, ‘‘Application of neural networks for
software quality prediction using object-oriented metrics,’’ J. Syst. Softw.,
vol. 76, no. 2, pp. 147–156, May 2005.

[68] A. Tosun, B. Turhan, and A. Bener, ‘‘Validation of network measures as
indicators of defective modules in software systems,’’ in Proc. 5th Int.
Conf. Workshop Predictor Models Softw. Eng., Vancouver, BC, Canada,
May 2009, p. 5.

[69] Understand. Accessed: Nov. 23, 2018. [Online]. Available:
https://scitools.com/

[70] S. Wang and X. Yao, ‘‘Using class imbalance learning for software defect
prediction,’’ IEEE Trans. Rel., vol. 62, no. 2, pp. 434–443, Jun. 2013.

[71] S. Wasserman and K. Faust, Social Network Analysis: Methods and Appli-
cations. New York, NY, USA: Cambridge Univ. Press, 1994.

[72] WEKA. Accessed: Aug. 7, 2017. [Online]. Available:
http://www.cs.waikato.ac.nz/ml/weka/

[73] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, ‘‘Comparing the effectiveness
of several modeling methods for fault prediction,’’ Empirical Softw. Eng.,
vol. 15, no. 3, pp. 277–295, Jun. 2010.

[74] W. E. Wong, V. Debroy, and B. Choi, ‘‘A family of code coverage-based
heuristics for effective fault localization,’’ J. Syst. Softw., vol. 83, no. 2,
pp. 188–208, Feb. 2010.

[75] W. E.Wong, V. Debroy, R. Gao, and Y. Li, ‘‘The DStar method for effective
software fault localization,’’ IEEE Trans. Rel., vol. 63, no. 1, pp. 290–308,
Mar. 2014.

[76] W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. Thuraisingham, ‘‘Effec-
tive software fault localization using an RBF neural network,’’ IEEE Trans.
Rel., vol. 61, no. 1, pp. 149–169, Mar. 2012.

[77] W. E. Wong, V. Debroy, and D. Xu, ‘‘Towards better fault localiza-
tion: A crosstab-based statistical approach,’’ IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 42, no. 3, pp. 378–396, May 2012.

[78] W. E. Wong and S. Gokhale, ‘‘Static and dynamic distance metrics for
feature-based code analysis,’’ J. Syst. Softw., vol. 74, no. 3, pp. 283–295,
Feb. 2005.

[79] W. E. Wong, S. S. Gokhale, and J. R. Horgan, ‘‘Metrics for quantifying the
disparity, concentration, and dedication between program components and
features,’’ in Proc. 6th Int. Softw. Metrics Symp., Nov. 1999, pp. 189–198.

[80] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, ‘‘A survey on
software fault localization,’’ IEEE Trans. Softw. Eng., vol. 42, no. 8,
pp. 707–740, Aug. 2016.

[81] W. E. Wong, J. R. Horgan, M. Syring, W. Zage, and D. Zage, ‘‘Applying
design metrics to predict fault-proneness: A case study on a large-scale
software system,’’ Softw. Pract. Exper., vol. 30, no. 14, pp. 1587–1608,
Nov. 2000.

[82] W. E.Wong, X. Li, and P. A. Laplante, ‘‘Be more familiar with our enemies
and pave the way forward: A review of the roles bugs played in software
failures,’’ J. Syst. Softw., vol. 133, pp. 68–94, Nov. 2017.

[83] W. E. Wong, Y. Qi, and K. Cooper, ‘‘Source code-based software risk
assessing,’’ in Proc. ACM Symp. Appl. Comput., Santa Fe, NM, USA,
Mar. 2005, pp. 1485–1490.

[84] W. E. Wong, J. Zhao, and V. K. Y. Chan, ‘‘Applying statistical method-
ology to optimize and simplify software metric models with missing
data,’’ in Proc. ACM Symp. Appl. Comput., Dijon, France, Apr. 2006,
pp. 1728–1733.

[85] J. Xu, Y. Gao, S. Christley, and G. Madey, ‘‘A topological analysis of
the open souce software development community,’’ in Proc. 38th Annu.
Hawaii Int. Conf. Syst. Sci., Big Island, HI, USA, Jan. 2005, pp. 1–10.

[86] C. W. Yohannese and T. Li, ‘‘A combined-learning based framework for
improved software fault prediction,’’ Int. J. Comput. Intell. Syst., vol. 10,
no. 1, pp. 647–662, Jan. 2017.

[87] T. Zimmermann and N. Nagappan, ‘‘Predicting defects using network
analysis on dependency graphs,’’ in Proc. ACM/IEEE 30th Int. Conf. Softw.
Eng., Leipzig, Germany, May 2008, pp. 531–540.

YIHAO LI received the B.S. degree in software
engineering from the East China Institute of Tech-
nology, the M.S. degree in computer science from
Southeastern Louisiana University, and the Ph.D.
degree from the Department of Computer Science,
TheUniversity of Texas at Dallas, Richardson, TX,
USA. He currently holds a postdoctoral position at
the Graz University of Technology. His research
interests include software risk analysis, software
fault-proneness prediction, software fault localiza-

tion, and program debugging.

VOLUME 7, 2019 63079

Y. Li et al.: Using Tri-Relation Networks for Effective Software Fault-Proneness Prediction

W. ERIC WONG received the M.S. and Ph.D.
degrees in computer science from Purdue Uni-
versity. He is a full professor and the founding
director of the Advanced Research Center for
Software Testing and Quality Assurance in Com-
puter Science, University of Texas at Dallas
(UTD). He also has an appointment as a guest
researcher with National Institute of Standards and
Technology (NIST), an agency of the US Depart-
ment of Commerce. Prior to joining UTD, he was

with Telcordia Technologies (formerly Bellcore) as a senior research scientist
and the project manager in charge of Dependable Telecom Software Devel-
opment. In 2014, he was named the IEEE Reliability Society Engineer of the
Year. His research focuses on helping practitioners improve the quality of
software while reducing the cost of production. In particular, he is working
on software testing, debugging, risk analysis/metrics, safety, and reliability.
He has very strong experience developing real-life industry applications
of his research results. Professor Wong is the Editor-in-Chief of IEEE
TRANSACTIONS ON RELIABILITY. He is also the Founding Steering Committee
Chair of the IEEE International Conference on Software Quality, Reliability,
and Security (QRS) and the IEEE International Workshop on Debugging and
Repair (IDEAR).

SHOU-YU LEE received the B.S. degree in com-
puter science from National Tsing Hua Univer-
sity, Taiwan, and the M.S. degree in computer
science from Tunghai University. He is currently
pursuing the a Ph.D. degree with The University
of Texas at Dallas, Richardson, TX, USA, under
the supervision of Prof. W. E. Wong. His current
research interests include software fault localiza-
tion, context-sensitive computing, and software
risk analysis.

FRANZ WOTAWA received the M.Sc. degree in
computer science and the Ph.D. degree from the
Vienna University of Technology, in 1994 and
1996, respectively. He is currently a Professor
of software engineering with the Graz University
of Technology. He was the Head of the Institute
for Software Technology, from 2003 to 2009. His
research interests include model-based and quali-
tative reasoning, theorem proving, mobile robots,
verification and validation, and software testing

and debugging. Beside theoretical foundations, he has been always interested
in closing the gap between research and practice. Since 2017, he has been the
Head of the Christian Doppler Laboratory for Quality Assurance Method-
ologies for Autonomous Cyber-Physical Systems. During his career, he has
written over 360 peer-reviewed papers in journals, books, conferences, and
workshops. He has supervised 86 master’s and 35 Ph.D. students. For his
work on diagnosis, he has received the Lifetime Achievement Award from
the International Diagnosis Community, in 2016. He has been a member of
various number of program committees and organized several workshops
and special issues of journals. He is a member of the Academia Europaea,
the IEEE Computer Society, ACM, the Austrian Computer Society (OCG),
and the Austrian Society for Artificial Intelligence, and a Senior Member of
the AAAI.

63080 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	DEVELOPER CONTRIBUTION NETWORK (DCN)
	MODULE DEPENDENCY NETWORK (MDN)
	SOCIO-TECHNICAL NEWORK (STN)
	DEVELOPER COLLABORATION NETWORK (DN)

	THE PROPOSED TRI-RELATION NETWORK (TRN)
	METRICS
	CASE STUDIES
	THREE RESEARCH QUESTIONS
	SIX SOFTWARE PROGRAMS STUDIED
	EXPERIMENTAL METHODOLOGY
	RESULTS

	THREATS TO VALIDITY
	INTERNAL VALIDITY
	EXTERNAL VALIDITY

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	YIHAO LI
	W. ERIC WONG
	SHOU-YU LEE
	FRANZ WOTAWA

